Zhao Yang

yangzhao@amss.ac.cn

Zhongguancun East Road No.55, Haidian, Beijing China

home
research
teaching

Preprints:

  1. Z. Yang and K. Zumbrun, Orbital stability of undercompressive viscous shock waves under L1∩ Hs4 perturbation, preprint. link
  2. V. Hur and Z. Yang, Unstable capillary-gravity waves, preprint. link
  3. Z. Yang, An alternative proof of modulation instability of Stokes waves in deep water, preprint. link

Publications:

  1. Z. Jiao, L. M. Rodrigues, C. Sun, and Z. Yang, Small-amplitude finite-depth Stokes waves are transversally unstable, Comm. Math. Phys., 406, 255 (2025). link
  2. B. Braker, J. Bronski, V. Hur, and Z. Yang, Asymptotic stability of sharp fronts: Analysis and rigorous computation, J. Differ. Equations, 444, 113550 (2025). link
  3. Z. Yang and K. Zumbrun, Multidimensional stability and transverse bifurcation of hydraulic shocks and roll waves in open channel flow, J. Math. Fluid Mech., 27, 30 (2025). link
  4. G. Faye, L. M. Rodrigues, Z. Yang, and K. Zumbrun, Existence and stability of nonmonotone hydraulic shocks for the Saint Venant equations of inclined thin-film flow, Arch. Ration. Mech. Anal., 248, 82 (2024). link
  5. V. Hur and Z. Yang, Unstable Stokes waves, Arch. Ration. Mech. Anal., 247, 62 (2023). link
  6. L. M. Rodrigues, Z. Yang, and K. Zumbrun, Convective-Wave Solutions of the Richard–Gavrilyuk Model for Inclined Shallow-Water Flow, Water Waves, 5, 1–39 (2023). link
  7. S. Jung, Z. Yang, and K. Zumbrun, Stability of strong detonation waves for Majda's model with general ignition functions, Quart. Appl. Math., 79, 357-365, (2021). link
  8. A. Sukhtayev, Z. Yang, and K. Zumbrun, Spectral stability of hydraulic shock profiles, Phys. D, 405, 132360 (2020). link
  9. Z. Yang and K. Zumbrun, Stability of hydraulic shock profiles, Arch. Ration. Mech. Anal., 235, 195-285 (2020). link
  10. Z. Yang and K. Zumbrun, Convergence as period goes to infinity of spectra of periodic traveling waves toward essential spectra of a homoclinic limit, J. Math. Pures Appl., 132, 27-40, (2019). link
  11. M. Johnson, P. Noble, L. M. Rodrigues, Z. Yang, and K. Zumbrun, Spectral stability of inviscid roll-waves, Comm. Math. Phys., 367, 265-316 (2019). link

Collaborators: