-
- 1. [FIS P58 33]. This problem does not assume that W_1 and W_2 are finite-dimensional. So you should never assume $\beta_1 = \{v_1, \dots, v_n\}$ (same for β_2). All you have are

$$
span(\beta_{1,2})=W_{1,2}
$$

and $\beta_{1,2}$ are linear independent sets. Also a direct sum $W_1 \bigoplus W_2$ means $W_1 \cap W_2 = \{0\}$ but not $W_1 \cap W_2 = \emptyset$. Indeed since W_1 and W_2 are both subspaces, they both contain 0 vector and their intersection contains at least the zero vector. We now turn to the proof.

Proof. (a) Because the sum $W_1 \oplus W_2$ is a direct sum, by definition, $W_1 \cap W_2 = \{0\}$. Because $span(\beta_{1,2}) = W_{1,2}$, in particular, $\beta_{1,2} \subset W_{1,2}$ and then we have

$$
\beta_1 \cap \beta_2 \subset W_1 \cap W_2 = \{0\}.
$$

As bases of vector spaces, $\beta_{1,2}$ do not contain zero vector. So $\beta_1 \cap \beta_2 = \emptyset$. To prove *β*₁ ∪ *β*₂ is a basis for *V*, we need to show (1) *V* ⊂ *span*(*β*₁ ∪ *β*₂); (2) *β*₁ ∪ *β*₂ is a linear independent set.

(1): For a $v \in V = W_1 \oplus W_2$, we can find $w_1 \in W_1$ and $w_2 \in W_2$ such that $v = w_1 + w_2$. Because $span(\beta_{1,2})=W_{1,2}$, we can find $\{w_1^1\}$ ¹₁, …, *w*¹_{*n*}} ⊂ *β*₁ and {*w*²₁ w_1^2, \cdots, w_m^2 } $\subset \beta_2$ such that

$$
w_1 = \sum_{i=1}^n a_i w_i^1
$$
, $w_2 = \sum_{j=1}^m b_j w_j^2$.

Therefore, $v = \sum_{i=1}^{n} a_i w_i^1$ $\sum_{j=1}^{n} b_j w_j^2$ *j* ∈ *span*(*β*¹ ∪*β*2).

(2): To show $\beta_1 \cup \beta_2$ is a linear independent set, we need to show any finite selection of distinct vectors from $\beta_1 \cup \beta_2$ are linear independent. If the finite selection of vectors are all from β_1 or β_2 , by linear independency of β_1 and β_2 , we are done. We then assume that the finite selection of vectors contain both vectors from β_1 and β_2 say $\{w_1^1$ ¹₁, …, *w*¹_{*n*}} ⊂ *β*₁ and {*w*²₁ $\{u^2_1, \dots, u^2_m\} \subset \beta_2$. And, we need to show

$$
\sum_{i=1}^{n} a_i w_i^1 + \sum_{j=1}^{m} b_j w_j^2 = 0
$$

has only trivial solution. Rearranging terms yields

$$
\sum_{i=1}^{n} a_i w_i^1 = -\sum_{j=1}^{m} b_j w_j^2 =: v
$$

Because $v = \sum_{i=1}^{n} a_i w_i^1$ *i*¹ ∈ *W*₁ and *v* = − $\sum_{j=1}^{m} b_j w_j^2$ j^2 ∈ *W*₂, we have *v* ∈ *W*₁ ∩ *W*₂ = {0}. Therefore,

$$
\sum_{i=1}^{n} a_i w_i^1 = -\sum_{j=1}^{m} b_j w_j^2 = v = 0,
$$

which implies

$$
a_1 = a_2 = \cdots = a_n = 0
$$
, $b_1 = b_2 = \cdots = b_m = 0$

 \Box

by linear independency of β_1 and β_2 .

(b) Because $\beta_1 \cup \beta_2$ is a basis for *V*, $\forall v \in V$, $\exists \{w_1^1\}$ ¹₁, …, *w*¹_{*n*}} ⊂ *β*₁ and {*w*²₁} $w_1^2, \cdots, w_m^2 \subset \beta_2$, s.t. $v = \sum_{i=1}^{n} a_i w_i^1$ $\sum_{j=1}^{n} b_j w_j^2$ $\sum_{i=1}^n a_i w_i^1$ $\sum_{j=1}^{n} b_j w_j^2$ j^2 ∈ W_2 , so V ⊂ W_1 + *W*₂. Now let $v \in W_1 \cap W_2$, $v \in W_1 \Rightarrow v = \sum_{i=1}^n a_i w_i^1$ \mathbf{v}_i^1 for some $\{w_1^1\}$ $w_1^1, \dots, w_n^1 \subset \beta_1$ and $v \in W_2 \Rightarrow v = \sum_{j=1}^m b_j w_j^2$ 2_j for some { w^2_1 w_1^2 , …, w_m^1 } ⊂ β₂. Now

$$
0 = \nu - \nu = \sum_{i=1}^{n} a_i w_i^1 - \sum_{j=1}^{m} b_j w_j^2
$$

and by linear independency of $\beta_1 \cup \beta_2$

$$
a_1 = a_2 = \cdots = a_n = 0
$$
, $b_1 = b_2 = \cdots = b_m = 0$.

Hence, $v = 0$ and $V = W_1 \bigoplus W_2$.

2. [FIS P58 34]. (a) Expand a basis β_1 of W_1 to a basis $\beta_1 \cup \beta_2$ of *V* and define $W_2 =$ *span*(β ₂). Then apply 33 part (b).

(b) $W_2 = span({(0, 1)})$ and $W'_2 = span({(1, 1)})$