
Asymptotic Analysis Homework 6 Due Dec. 8th, 2025

Please complete following problems.

1. Excise 6.1 (a) (10 points)

2. Excise 6.1 (g) (10 points)

3. Excise 6.5. (For part c, omit “What happens to the solution near T = Tc is ...") (20
points)

3. (a). A steady state ys must solveµys = e−ys . Clearly for anyµ> 0 there is a unique solution
ys = ys(µ) corresponding to the intersection point of linear function µys and exponential
function e−ys . Asµ increases from 0 to∞, ys(µ) decreases strictly from∞ to 0. To determine
the stability, we find the linearized equation reads

y ′ =−(µ+e−ys )y =−µ(1+ ys)y

where −µ(1+ ys) < 0, whence the steady state ys is asymptotic stable.

(b). Since µ = y−1
s e−ys , from now on we parameterize the equation by ys . For the delayed

equation with T > 0, we linearize the equation to obtain

y ′ =−y−1
s e−ys y1 −e−ys y(t −T ).

Substituting y = eγt yields the characteristic equation

γ=−y−1
s e−ys −e−ys e−γT .

With γ := γr + iγi , γr ,γi ∈ R, we find the characteristic equation amounts to F(γr ,γi ) = 0
where

F(γr ,γi ; ys ,T ) :=
(
γr +e−ys

(
y−1

s +e−γr T cos(γi T )
)

γi −e−ys e−γr T sin(γi T )

)
.

Clear is that µ > 1/e amounts to ys < 1. If ys < 1 we claim that any solution (γr ,γi ) of
F(γr ,γi ) = 0 must satisfy γr < 0. For if γr ≥ 0, we have

F1(γr ,γi ; ys ,T ) = γr +e−ys
(
y−1

s +e−γr T cos(γi T )
)≥ e−ys

(
y−1

s +e−γr T cos(γi T )
)> 0.

Contradiction.

(c). Let us determine stability boundaries in the parameter space {(ys ,T ) : ys ,T > 0} where
F(γr ,γi ; ys ,T ) achieves neutral roots with γr = 0. This readily yields

e−ys
(
y−1

s +cos(γi T )
)= 0, γi −e−ys sin(γi T ) = 0.

For ys > 1, the foregoing equation admits solutions satisfying cos(γi T ) =−y−1
s . Inserting it

into the latter equation we find

γi ,± =±e−ys

√
1− y−2

s

and the stability boundaries satisfy

−
√

y2
s −1 = tan

(
e−ys

√
1− y−2

s T
)
.
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Figure 1: Stability boundaries.

The latter equations gives a families of boundaries

Tn(ys) =
nπ−arctan

(√
y2

s −1
)

e−ys

√
1− y−2

s

=
nπ−arctan

(√
y2

s −1
)

µ
√

y2
s −1

, n ≥ 1, ys > 1.

For ys ∈ (1,∞), there holds T1(ys) < T2(ys) < ·· · < Tn(ys) < ·· · . Also Tn(1+),Tn(+∞) =∞. We
plot the boundaries in Figure 1. Since the region

{(ys ,T ) : 1 < ys ,0 < T < T1(ts)}

is connected with the region {(ys ,T ) : ys < 1} where asymptotic stability holds, we imme-
diately obtain asymptotic stability of the aforementioned region. Next, we determine the
stability in the region {(ys ,T ) : 1 < ys ,T1(ts) < T }. We compute by implicit function theorem
that (

∂γr
∂T
∂γi
∂T

)
(ys ,Tn(ys)) =−

(
∂F1
∂γr

∂F1
∂γi

∂F2
∂γr

∂F2
∂γi

)−1 (
∂F1
∂T
∂F2
∂T

) (0,γi ,±, ys ,Tn(ys))

=
(
e−2ys (1− y−2

s )
(
1+2Tn(ys)y−1

s e−ys
)

∗
)

.

where we find
∂γr

∂T
(ys ,Tn(ys)) > 0, for any n ≥ 1 and ys > 1.

Thus when (ys ,T ) crosses the stability boundaries, there is always a pair of complex conju-
gate eigenvalues with non-zero imaginary parts crossing the imaginary axis with non-zero
speeds from the stable side to the unstable side as T increases. This gives a transversal Hopf
bifurcation and also yields instability in the region {(ys ,T ) : 1 < ys ,T1(ts) < T }.
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